The Nielsen Lab is still a virtual lab consisting of
Martin working in the labs of several highly renowned labs throughout the
world. Currently, he is working at the Technical University of Denmark (DTU)
together with associate professor Anders Riisager. Here, he is working on the
catalytic valorisation of biomass.
From July
2013 and 1.5 year ahead, Nielsen will move to Harvard where he will join
professor Ted Betley in investigating the fundamental behaviour of polynuclear
iron clusters.
Then, he
will spend 12 months at DTU where he will dedicate the study on polynuclear
clusters on catalytic possibilities, especially with focus on valorisation of
CO2 and biomass.
Hereafter,
6 months in the labs of professor James Dumesic will allow Nielsen to study heterogeneous
iron materials as catalysts for the transformations of carbohydrates to
industrially viable compounds.
Returning
to DTU mid 2016, Nielsen will start performing research on catalysis for
sustainability employing novel catalytic means.
FUNDED PROJECT DESCRIPTIONS:
- Marie Curie FP7, International Outgoing
Fellowship
English:
Knowledge and
skills on the highest level in the world will be transferred from Harvard
University, USA, to DTU, Denmark. The combination of the research fields of
polynuclear clusters and biomass conversion has a multidisciplinary character.
Hence, it will bring new research platforms to Europe, rendering it highly
attractive for the best researchers in the world. Moreover, biomass conversion
for energy and chemicals is a very hot topic and sustainable living is part of
the Horizon 2020 program described by the European Commission.
Danish:
Der vil blive overført
viden og kompetencer på højeste niveau i verden fra Harvard University
i USA til DTU i Danmark. Kombinationen af forskningsfelterne polynukleare klynger og biomasse omdannelse har en
multidisciplinær karakter. Derfor vil det bringe nye forsknings-platforme til
Europa, hvilket gør det meget attraktivt for de bedste forskere i verden.
Endvidere er biomasse omdannelse til energy og
kemikalier et meget vigtigt emne og udviklingen af et bæredygtig samfund er en
del af Horizon 2020 programmet, som er udfattet af den Europæiske Kommision.
- The Danish Council for Independent Research,
Technology and Production Sciences (FTP) Fellowship
Det Frie Forskningsråd, Teknologi og Produktion
English:
In the future, the transformation of particular CO2 and biomass to useful chemicals will be an essential part of a sustainable chemistry industry. A plethora of approaches to the development of techniques for these valorisations have recently been suggested, and most of them are currently being researched. A transcendent tendency is, however, that these approaches utilise traditional organic chemistry, where one chemical bond is formed or broken at the time. Nature have developed enzymes that contain the so-called polynuclear clusters, which are capable of performing multiple bond forming or breaking at the time, and thereby are able to catalyse chemical reactions under far more gentle conditions than modern synthetic catalysts are. Thus, they resemble a low-energy alternative, which very well can show out to be the deciding factor whether a future synthetic method is sustainable or not. This interdisciplinary project seeks to exploit these clusters unique properties to find new low-energy methods for the valorisation of CO2 and biomass. Because enzymatic systems generally speaking are unsuitable for industrial use for chemical synthesis, we aim to create synthetic polynuclear clusters that are capable of performing the desired transformations. With this ambitious international collaboration between Harvard University and The Technical University of Denmark it is the goal to develop novel catalytic systems that can create a foundation for a new generation of sustainable catalysis to the Danish industry.
Danish:
I fremtiden vil omdannelsen af især CO2 og biomasse til brugbare kemikalier
være en essentiel del af en bæredygtig kemisk industri. Et væld af tilgange til
udviklingen af teknikker til disse omdannelser er i disse år blevet foreslået,
og de fleste er dem bliver der lige nu forsket i. En gennemgående tendens er
dog, at disse tilgange anvender traditionel organisk kemi, hvor én kemisk
binding bindes/brydes ad gangen. Naturen har udviklet enzymer, der indeholder
de såkaldte polynukleare klynger, som er i stand til
at udføre multiple bindingsdannelser/-brydninger ad gangen, og derved
katalysere kemiske reaktioner ved langt mere skånsomme omstændigheder end
moderne syntetiske katalysatorer kan. De udgør altså et lav-energi
alternativ, hvilket kan meget vel være forskellen på, om en metode er
bæredygtig eller ej. Dette tværfaglige projekt søger, at udnytte disse klyngers
unikke egenskaber til at finde nye, lav-energi
metoder til omdannelse af CO2 og biomasse. Da enzymatiske systemer generelt set
er uegnede til industriel brug inden for kemisk syntese, vil vi udforme
syntetiske polynukleare klynger, der vil være i stand
til, at udføre disse ønskede omdannelser. Med dette ambitiøse, internationale
samarbejde mellem Harvard University og Danmarks
Tekniske Universitet er det således målet, at udvikle nye katalytiske systemer,
som kan danne grundlag for en ny generation af bæredygtig katalyse til dansk
industri.
- Sapere Aude: DFF Research Talent
Sapere Aude: DFF-Ung Eliteforsker
English:
Chemicals extracted from fossil fuels are crucial for today's society. It is well-known that the use of fossil fuels is accompanied by serious environmental and societal problems. Hence, it is necessary to develop new methods for producing sustainable chemicals in the future.
It is therefore important that a greater share of our chemicals are produced from particular CO2 and biomass. As described in the FTP-project "Studies of Polynuclear Iron Clusters for Biomass Conversion" above, Martin Nielsen seeks to realise these goals by developing synthetic versions of the so-called highly soluble polynuclear clusters, which have shown to be effective in a range of natural transformation processes. In this Sapere Aude project is added an important dimension to these endeavours, where insoluble catalysts, amongst others insoluble polynuclear clusters, are investigated with the aim for biomass transformation. The study of both highly soluble and insoluble polynuclear clusters will provide an utmost valuable insight in to their general behaviour.
The project is conducted at the prestigious University of Wisconsin-Madison in USA in collaboration with Prof. Dumesic who is a leading scientist in this area. Together with the FTP supported stay at Harvard University and The Technical University of Denmark is an ambitious, international, and interdisciplinary collaboration achieved. This will drastically increase the possibility for the development of novel effective catalytic systems as foundation for a new generation of sustainable catalysis for the Danish industry.
Danish:
Kemikalier udvundet fra fossile brændstoffer er i dag afgørende for vores
samfund. Det er velkendt, at brugen af fossile brændstoffer skaber væsentlige
miljø- og samfundsmæssige problemstillinger. Derfor er det i fremtiden nødvendigt
at finde nye veje til at producere miljøvenlige kemikalier.
Derfor er det vigtigt, at en større andel af vores
kemikalier bliver produceret ud fra især CO2 og biomasse. Som beskrevet i FTP-projektet "Studies of Polynuclear
Iron Clusters for Biomass Conversion" søger
Martin Nielsen at realisere disse mål ved at udvikle syntetiske udgaver af de
såkaldte letopløselige polynukleare klynger, der har
vist sig effektive i en række naturlige omdannelsesprocesser. I dette Sapere Aude projekt tilføjes en vigtig
dimension i disse bestræbelser, hvor tungtopløselige katalysatorer, heriblandt
tungtopløselige polynukleare klynger, undersøges med
henblik på biomasse omdannelse. Studiet af både let-
og tungtopløselige polynukleare klynger giver en
yderst værdifuld indsigt i deres generelle adfærd.
Projektet udføres på det prestigefyldte University of Wisconsin-Madison i USA i samarbejde med
Prof. Dumesic, som er førende inden for området.
Sammenholdt med det FTP-støttede arbejde på Harvard University og Danmarks Tekniske Universitet opnås der
således et ambitiøst, internationalt og tværfagligt samarbejde, der drastisk
øger muligheden for udviklingen af nye effektive katalytiske systemer som
grundlag for en ny generation af bæredygtig katalyse til dansk industri.